

SHORT COMMUNICATION

Pharmacological Modulation of Human Platelet Leukotriene C₄-Synthase

Angelo Sala,*‡ Giancarlo Folco,* Peter M. Henson† and Robert C. Murphy†
*Center for Cardiopulmonary Pharmacology, Institute of Pharmacological Sciences, School of Pharmacy,
University of Milan, Via Balzaretti 9, 20133 Milan, Italy; and †National Jewish Center for Immunology and
Respiratory Medicine, 1400 Jackson St, Denver, CO 80202 U.S.A.

ABSTRACT. The aim of this study was to test if human platelet leukotriene C₄-synthase (LTC₄-S) is pharmacologically different from cloned and expressed LTC4-S and, in light of the significant homologies between 5-lipoxygenase activating protein (FLAP) and LTC4-S, if different potencies of leukotriene synthesis inhibitors acting through binding with FLAP (FLAP inhibitors) reflect in different potencies as LTC₄-S inhibitors. Leukotriene C₄ (LTC₄) synthesis by washed human platelets supplemented with synthetic leukotriene A₄ (LTA₄) was studied in the absence and presence of two different, structurally unrelated FLAP inhibitors (MK-886 and BAY-X1005) as well as a direct 5-lipoxygenase inhibitor (zileuton). LTC₄ production was analyzed by RP-HPLC coupled to diode array detection. We report that human platelet LTC₄-S was inhibited by MK-886 and BAY-X1005 (IC₅₀ of 4.7 μM and 91.2 μM, respectively), but not by zileuton (inactive up to 300 μM); all 3 compounds were able to inhibit 5-lipoxygenase metabolite biosynthesis in intact human polymorphonuclear leukocytes (IC50 of 0.044 μ M, 0.85 μ M, and 1.5 μ M, respectively). Platelet LTC4-S does not appear pharmacologically different from expression cloned LTC₄-S. LTC₄ -S inhibition by FLAP inhibitors is in agreement with the significant homology reported for expression-cloned LTC₄-S with FLAP. Furthermore, functional homology of the binding sites for inhibitors on LTC4-S and FLAP is suggested by the conservation of the relative potencies of MK-886 and BAY-X1005 vs FLAP-dependent 5-lipoxygenase activity and LTC4-S inhibition: MK-886 was 19.3-fold more potent than BAY-X1005 as FLAP inhibitor and 19.6-fold more potent than BAY-X1005 as LTC₄-S inhibitor. BIOCHEM PHARMACOL 53;6:905–908, 1997. © 1997 Elsevier Science Inc.

KEY WORDS. Five-lipoxygenase activating protein; human platelets; leukotriene C_4 ; leukotriene C_4 -synthase; leukotriene synthesis inhibitors; 5-lipoxygenase inhibitors

LTC₄-S§ (EC 2.5.1.37), the specific enzyme responsible for the conversion of LTA₄ into LTC₄ has recently been purified to homogeneity [1–2] and expression-cloned from human monocytic leukemia (THP-1) and myelocytic leukemia (KG-1) cell lines [3–4]. The deduced aminoacid sequence showed no homology with other glutathione S-transferases, but significant identity (31%) was found with the FLAP. According to this observation, LTC₄-S was inhibited by increasing concentrations of compound MK-886, known to inhibit 5-LO activity in intact PMNL by binding with the integral membrane protein FLAP [5].

To test potential pharmacological differences between human platelet LTC₄-S and expression-cloned LTC₄-S, we

MATERIALS AND METHODS

PMNL were prepared by dextrane sedimentation and centrifugation on discontinuous Percoll gradient (Pharmacia, Uppsala, Sweden), as previously described [7].

Washed human platelets were prepared according to Patscheke [8].

Cells were resuspended in PBS without Ca^{2+} and Mg^{2+} (PBS $^{-}$) and kept on ice until use.

LTA₄ free acid was obtained through base hydrolysis of LTA₄ methyl esther (Cayman Chemical Co., Ann Arbor, MI), using ice-cold acetone:sodium hydroxide 0.25 M (4:1, v:v) at room temperature for 60 min. LTA₄ free acid was

studied the pharmacological modulation of human platelet LTC₄-S by two different, structurally unrelated leukotriene synthesis inhibitors acting through binding with FLAP (FLAP inhibitors), compound MK-886, and compound BAY-X1005 [6]. The results obtained showed that human platelet LTC₄-S is dose-dependently inhibited by both compounds, but not by a direct 5-lipoxygenase inhibitor.

[†] Corresponding author. A. Sala, Center for Cardiopulmonary Pharmacology, Inst. of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy. Telephone +39-2-20488312; FAX +39-2-29404961

 $[\]$ Abbreviations: LTC₄-S, leukotriene C₄-synthase; FLAP, 5-lipoxygenase activating protein; LTC₄, leukotriene C₄; leukotriene A₄, LTA₄; PMNL, polymorphonuclear leukocytes; 5-HETE, 5-hydroxy-eicosatetra-enoic acid; fMLP, formyl-methionyl-meucyl-mhenylalanine.

906 A. Sala et al.

added to 1 mL of human platelets (10^8 cells) at the final concentration of 1 μ M. Metabolism of exogenous LTA₄ proceeded for 10 min at 37°C in the presence of increasing concentrations of the compounds tested in DMSO, or DMSO alone.

Human PMNL (1×10^6 cells mL⁻¹) were supplied with Ca⁺⁺ (2 mM) and Mg⁺⁺ (0.5 mM) and, following preincubation at 37°C for 5 min in the presence of increasing concentrations of the compounds tested in DMSO, or DMSO alone, the calcium ionophore A23187 (Calbiochem, La Jolla, CA; 1μ M) was added to trigger eicosanoid metabolism.

Incubations were terminated after 10 min with 2 volumes of ice-cold methanol (Merck, Darmstadt, Germany), containing the HPLC internal standard PGB₂ (25 ng, Cayman) and samples were stored at -20°C.

Samples from PMNL and platelet incubations were analyzed by reverse-phase HPLC coupled with diode array-UV detection, as previously described [9]. Briefly, samples were diluted with water to a final methanol concentration lower than 20% and extraction was quickly carried out using a solid phase cartridge (Supelclean LC-18, Supelco, Bellafonte, PA); the retained material was eluted using 90% aqueous MeOH. After evaporation, the dried extract was reconstituted in HPLC mobile phase A (600 μL) and injected into an HPLC gradient pump system (Mod. 126, Beckman Analytical, Palo Alto, CA) connected to a diodearray UV detector (Mod. 168, Beckman Analytical), using a microprocessor-controlled autosampler (Jasco 851-AS, Tokyo, Japan), with sample kept at 4°C. UV absorbance was monitored at 280 and 235 nm, and full UV spectra (210-340 nm) acquired at a rate of 0.5 Hz.

A multilinear gradient from solvent A (methanol/acetonitrile/water/acetic acid 10/10/80/0.02, v/v/v/v, pH 5.5 with ammonium hydroxide) to solvent B (methanol/acetonitrile 50/50, v/v) at a flow rate of 0.5 mL/min, was used to elute a 3 × 150 mm column (RP-18 endcapped Superspher, 4 µm, Merck). Solvent B was increased to 35% over 6 min, to 65% over 25 min, and to 100% over 3 min. This method allows resolution of all 5-lipoxygenase metabolites, from 20-carboxy-LTB₄ to 5-HETE, in less than 35 min, with excellent sensitivity (1–3 pmol for LTA₄-derived metabolites and 20 pmol for 5-HETE), ensured by the midbore RP column. Quantitation was carried out on UV spectral analysis, positively identified peaks only, using their HPLC peak areas relative to that of PGB₂ at 280 nm, and calculated from the responses of standard compounds.

The results were expressed as mean \pm standard deviation (SD). IC₅₀ values were calculated using nonlinear regression fitting.

RESULTS AND DISCUSSION

Human platelets were able to convert exogenous LTA₄ into LTC₄, in agreement with data obtained in several labora-

tories [10]. Under the experimental conditions used (LTA₄ 1 μM, 10 min incubation, 37°C, in the absence of albumin), the average LTC₄ production by 10⁸ platelets was 143 ± 7 pmol. Subsaturating LTA₄ concentration was chosen according to a study reporting the activity of MK-886 as LTC4-S inhibitor [4], in light of the potential biological significance of this concentration. PMNL, the likely source of LTA₄ in vivo, are able to synthesize 250-350 pmol of LTA₄ per million cells upon A23187 challenge, and approximately 1/10th of this amount upon challenge with fMLP, after priming with granulocyte macrophage-colony stimulating factor [9, 11]. Although local concentrations of lipid mediators at inflammation sites might increase to relatively high levels, it is unlikely that concentrations higher than 1 µM might be achieved during biologically significant conditions.

Preincubation with increasing concentrations of MK-886 or BAY-X1005 caused a dose-dependent inhibition of LTC₄ formation with IC₅₀ values of 4.7 μ M and 91.2 μ M, respectively (Fig. 1). Zileuton, a direct inhibitor of 5-lipoxygenase [12], did not cause inhibition of the LTC₄-S up to the concentration of 300 μ M.

Challenge of peripheral human PMNL, with the calcium ionophore A23187 (1 μ M, 10 min), resulted in the expected profile of 5-LO-derived metabolites. 20-hydroxy-LTB₄ was the main product, with significant amounts of 20-carboxy-LTB₄, LTC₄, LTB₄, 5-HETE, and nonenzy-matic LTA₄ metabolites (namely Δ^6 -trans-LTB₄ isomers and 5,6-diHETE isomers) being observed. In agreement

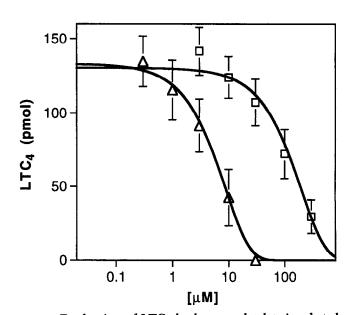


FIG. 1. Production of LTC₄ by human platelets incubated with synthetic LTA₄. Human platelets (10^8 cells) were incubated with synthetic LTA₄ free acid ($1 \mu M$, $10 \min$, $37^{\circ}C$) in the presence of increasing concentrations of MK-886 (\triangle) or BAY-X1005 (\square). LTC₄ (pmol) was quantitated by reverse-phase HPLC. Control platelets synthesized 143 ± 7 pmol of LTC₄. Values are expressed as means \pm SD of 3 different platelet preparations.

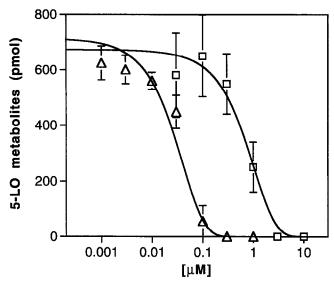


FIG. 2. Production of 5-lipoxygenase metabolites by human polymorphonuclear leukocytes challenged with the Ca⁺⁺-ionophore A23187. Human polymorphonuclear leukocytes (10^6 cells) were challenged with Ca⁺⁺-ionophore A23187 (1 μ M, 10 min at 37°C) in the presence of increasing concentrations of MK-886 (\triangle) or BAY-X1005 (\square). 5-lipoxygenase metabolites (5-HETE and LTA₄-derived metabolites) were quantited by reverse-phase HPLC. Control PMNL synthesized 639 \pm 43 pmol of 5-LO metabolites. Values are expressed as means \pm SD of 4 different PMNL preparations.

with published data, MK-886, BAY-X1005 (Fig. 2) and zileuton were able to concentration-dependently inhibit the synthesis of 5-LO metabolites. The IC $_{50}$ values for the 3 compounds tested were 0.044 μ M, 0.85 μ M, and 1.5 μ M, respectively.

The aminoacid sequence of LTC₄-S obtained from molecular cloning in myelocytic leukemia cell lines showed no identity with other glutathione S-transferases, but did demonstrate significant identity with the integral membrane protein FLAP. Identity reached 44% for the N-terminus of the protein, and the three transmembrane sequences of the two proteins were basically overlapping [3–4]. According to this observation, compound MK-886, a FLAP-binding molecule known to efficiently inhibit leukotriene synthesis in intact cells through interaction with FLAP, was found to inhibit THP-1 LTC₄-S as well as COS-expressed LTC₄-S [3–4].

We report that LTC₄-S in intact platelets is inhibited by two different, structurally unrelated leukotriene synthesis inhibitors, known to bind with high affinity to a specific site on FLAP [5–6]. We provide pharmacological evidence that LTC₄-S in intact platelets is not different from myelocytic leukemia cell line and COS-expressed LTC₄-S. This is in agreement with the reported cross-reactivity of platelet LTC₄-S with a polyclonal antibody raised against human lung LTC₄-S [13]. Although no direct evidence of a potential interaction of MK-886 or BAY X1005 with the platelet LTC₄-S has been provided, inhibition of recombinant LTC₄-S by MK-886 has recently been reported [14]. Be-

cause a total methanol extract of the platelet incubation was obtained, the effect of Bay X1005 and MK-886 on the export step of LTC4 into the supernatant could be ruled out.

Strict conservation of relative potencies for the two inhibitory activities (MK-886 was 19.3- and 19.6-fold more potent than Bay X1005 for 5-LO and LTC₄-S inhibition, respectively) suggests that the observed homology of FLAP and LTC₄-S preserves functionally similar binding sites for inhibitors. This observation may represent an important lead in the development of new potent LTC₄-S inhibitors.

The authors are grateful to Dr. A. W. Ford-Hutchinson (Merck-Frosst, Pointe Claire-Dorval, Quebec, Canada) for the kind gift of compound MK-886, to Dr. R. Müller-Peddinghaus (Bayer AG, Wuppertal, Germany) for the kind gift of compound Bay X1005, and to Dr. G. Carter (Abbott Laboratories, North Chicago, IL) for the kind gift of compound zileuton.

References

- Penrose JF, Gagnon L, Goppelt-Straube M, Myers P, Lam B, Jack RM, Austen KF and Soberman RY, Purification of human leukotriene C₄ synthase. *Proc Natl Acad Sci USA* 89: 11603–11606, 1992.
- Nicholson DW, Ali A, Vaillancourt JP, Calaycay JR, Mumford RA, Zamboni RJ and Ford-Hutchinson AW, Purification to homogeneity and the N-terminal sequence of human leukotriene C₄ synthase: a homodimeric glutathione S-transferase composed of 18-kDa subunits. Proc Natl Acad Sci USA 90: 2015–2019, 1993.
- Lam BK, Penrose JF, Freeman GJ and Austen KF, Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A₄. Proc Natl Acad Sci USA 91: 7663–7667, 1994.
- Welsch DJ, Creely DP, Hauser SD, Mathis KJ, Krivi GG and Isakson PC, Molecular cloning and expression of human leukotriene-C4 synthase. Proc Natl Acad Sci USA 91: 9745– 9749, 1994.
- Miller DK, Gillard JW, Vickers PJ, Sadowski S, Leveille C, Mancini JA, Charleson P, Dixon RAF, Ford-Hutchinson AW, Fortin R, Gauthier JY, Rodkey J, Rosén R, Rouzer C, Sigal IS, Strader CD and Evans JF, Identification and isolation of a membrane protein necessary for leukotriene production. *Nature* 343: 278–281, 1990.
- Hatzelmann A, Fruchtmann R, Mohrs KH, Raddatz S and Müller-Peddinghaus R, Mode of action of the new selective leukotriene synthesis inhibitor BAY X1005 {(R)-2-[4-(Quinolin-2-YL-Methoxy) Phenyl]-2-Cyclopentyl Acetic Acid} and structurally related compounds. Biochem Pharmacol 45: 101–111, 1993.
- Sala A, Rossoni G, Buccellati C, Berti F, Maclouf J and Folco GC, Formation of sulfidopeptide-leukotrienes by cell-cell interaction causes coronary vasoconstriction in isolated, cellperfused rabbit heart. Br J Pharmacol 110: 1206–1212, 1993.
- Patscheke H, Shape and functional properties of human platelets washed with acid citrate. *Haemostasis* 10: 14–22, 1980.
- Sala A, Bolla M, Zarini S, Müller-Peddinghaus R and Folco G, Release of Leukotriene A₄ versus Leukotriene B₄ from human polymorphonuclear leukocytes. J Biol Chem 271: 17944–17948, 1996.

908

 Maclouf J, Murphy RC and Henson P, Transcellular sulfidopeptide leukotriene biosynthetic capacity of vascular cells. Blood 74: 703-707, 1989.

- 11. DiPersio JF, Naccache PH, Borgeat P, Gasson JC, Nguyen M-H and McColl SR, Characterization of the priming effects of human granulocyte-macrophage colony-stimulating factor on human neutrophil leukotriene synthesis. *Prostglandins* 36: 873–891, 1988.
- 12. Carter WG, Young PR, Albert DH, Bouska J, Dyer R, Bell RL, Summers JB and Brooks DW, 5-Lipoxygenase inhibitory
- activity of Zileuton. J Pharmacol Exp Ther 256: 929-936, 1991.

A. Sala et al.

- 13. Penrose JF, Spector J, Lam BK, Friend DS, Xu K, Jack RM and Austen KF, Purification of human lung leukotriene C4 synthase and preparation of a polyclonal antibody. *Am J Respir Crit Care Med* **152:** 283–289, 1995.
- 14. Lam BK, Penrose JF, Rokach J, Xu KY, Baldasaro MH and Austen KF, Molecular cloning, expression and characterization of mouse leukotriene C4 synthase. *Eur J Biochem* **238**: 606–612, 1996.